Как выбрать настольный 3d принтер?

Почему 3D-печать проста, но не популярна?

Все, что раньше требовало специальных навыков, теперь сводится лишь к трём. Достаточно уметь:

1. Создавать 3D-модели в любом CAD-пакете. 2. Собирать и обслуживать принтер. 3. Управлять процессом при помощи базовых знаний программирования.

Вот и все пресловутые аддитивные технологии в быту: можно скачать готовую модель для печати, её преобразование в код неплохо выполняет Cura.

Некоторые конструкции, приобретаемые в виде конструктора или собираемые собственноручно из отдельных комплектующих, требуют к себе не только постоянное внимание во время эксплуатации, но и длительную сборки с трудоёмкой наладкой. Не лучший способ для старта. В результате технология остаётся уделом гиков, инженеров и некоторых фанатов: любителей настольных игр и владельцев редких автомобилей, которым такой способ изготовления деталей или фигурок позволяет серьезно экономить бюджет

В результате технология остаётся уделом гиков, инженеров и некоторых фанатов: любителей настольных игр и владельцев редких автомобилей, которым такой способ изготовления деталей или фигурок позволяет серьезно экономить бюджет

Не лучший способ для старта. В результате технология остаётся уделом гиков, инженеров и некоторых фанатов: любителей настольных игр и владельцев редких автомобилей, которым такой способ изготовления деталей или фигурок позволяет серьезно экономить бюджет.

Умельцев с достаточной мотивацией очень мало, поэтому большинство обращается к тем, кто уже освоил принтеры в силу начальной подготовки и наличия значительного запаса времени.

А может быть иначе, хотя бы для самых простых задач? Может. Трёхмерную печать дома освоит даже маленький ребенок.

Как работает и печатает

Создание модели

После сборки и настройки (калибровки) необходимо создать печатаемую трехмерную модель в 3D-редакторе.

  • 3D-моделирование. В программе для трехмерного моделирования создается модель. Крупные прототипы, которые не поместятся в камеру принтера, делятся на несколько помельче. Трехмерная модель отправляется в программу-слайсер для формирования G-кода.
  • G код. Слайсер – приложение для автоматической подготовки цифровой модели в формате STL к печати на 3D-принтере – генерирования G-кода. Слайсер нарезает модель на слои и описывает движения печатающей головки и ее действия, необходимые для формирования прототипа. На основе G-кода печатающая каретка передвигается по заданной траектории, а сопло наносит материал в указанные моменты.

История создания

Хоть в широких массах 3D-технологии стали известны лишь в последние пару лет, первые модели подобных принтеров появились много лет назад. В 1934 году компания Charles Hull первой выпустила 3D-принтер, который печатал объект с помощью использования цифровых данных. В 1988 году в продажу поступила более компактная модель для домашнего применения, которая получила название SLA-250.

Технологии не стоят на месте. Если первые принтеры печатали довольно неаккуратные модели, то их «потомки» становились все более точными. В 1993 году компания Solidscape стала выпускать принтеры на струйной основе, которые были нацелены на производство небольших деталей с идеально ровной поверхностью.

Но все же спрос стимулирует производство, поэтому наибольший скачок в развитии 3D-технологий был совершен именно в 21-м веке. В 2005 году появилось первое устройство, которое было способно печатать цветные объекты.

Что можно сделать на 3D-принтере? В настоящее время трехмерная печать открывает неведомые доселе возможности: на 3D-устройствах можно напечатать практически любую вещь — от кровеносного сосуда до габаритной мебели или оружия. Промышленные 3D-принтеры могут изготавливать целые самолеты и здания, а более компактные домашние модели часто используют для производства тестовых моделей и необходимых бытовых предметов.

Филип Коттон

  • Филип – основатель 3dfilemarket.com, независимого рынка, где можно не только делиться одобренными 3D-печатными моделями, но и продавать их. Он также является учителем, который преподает 3D-печать учащимся средней школы, за что два года подряд (в 2013 и 2014 годах) был награжден премией 3dprintshow Educational Excellence Award («За успехи в обучении»). Кроме того, он консультировал по вопросам 3D-печати канал BBC и преподавал 3D-печать студентам высших учебных заведений.
  • Более того, его имя внесли в десятку людей из области 3D-печати, к которым имеет смысл присмотреться – наряду с «лицом» Makerbot Бре Петтисом и блоггершей Рейчел Парк. Он также сотрудничает с компанией, выпускающей 3D-принтеры beethefirst (на правах представителя по вопросам образования), и регулярно публикуется на 3D Printing Association.
  • Сайт – 3dfilemarket.com

Выбирайте такой 3D-принтер, производитель (а еще лучше – местный поставщик) которого славится хорошей клиентской поддержкой. Таким образом, если вам понадобится помощь, то вы ее получите не из какого-то далекого центра, а на местном уровне. Если вы купили принтер на eBay, и вам его привезли, например, из Китая, то в случае неполадки починить его будет очень тяжело. А если принтер будет куплен где-то поблизости, то проблем с этим будет гораздо меньше.

Найдите хороший форум, чтобы понимать, что вообще такое 3D-печать. Участники этих сообществ, как правило, очень отзывчивы и могут стать хорошими посредниками между вами и драгоценным опытом. 3D-печать развивается с бешеной скоростью, а участие в форумной жизни поможет вам всегда оставаться в курсе последних наработок и идей в этой области.

Зачем нужен 3D-принтер

Принтер весьма пригодится инженерам-самодельщикам. Вам больше не придётся искать универсальный корпус для проекта, а потом сверлить в нём дополнительные отверстия. 30 минут проектирования, несколько часов на печать — и у вас уже готов корпус, который идеально подходит именно под ваше устройство. Сборка из 5 шилдов никуда не влезает? Забудьте о таких проблемах.

Принтер точно поможет в ремонте штуковин по дому. У каждого в жизни случалась ситуация, когда вещь приходилось выбросить, хотя в ней сломалась всего одна пластиковая деталь. С помощью 3D-печати вы сможете легко заменить в приборах редкие пластиковые детали, которые трудно найти отдельно.

Пока вы не научились моделировать пластиковые детали самостоятельно, их можно попросту качать в интернете. Существует множество сайтов с миллионами готовых бесплатных моделей, которыми свободно обмениваются пользователи. Мы посвятили поиску моделей отдельную статью.

Шероховатость тонкой стенки.

При подготовке G-кода в стандартном виде программа стремится сделать Вашу деталь максимально прочной. Это плохо лишь в одном случае, когда изделие имеет тонкостенные элементы. При построении траектории мы задаем минимальную толщину стенки, внутри которой будет строиться заполнение. Как правило эта толщина равна 3-ем диаметрам сопла. Но в случаях, когда есть места, где толщина меньше, чем толщина внешней стенки программа при построении траектории обрисует по одному периметру с каждой стороны, а между ними заполнит пустоту. Из-за того, что заполнение будет происходить на расстоянии от 1 до 2 диаметров сопла, экструдер начнет вибрировать, начнется инерционное биение (см. пункт инерционное биение). Чем больше это расстояние сводится к 1 диаметру сопла, тем быстрее наступает околорезонансная частота. Все это негативно сказывается на внешности этой стенки, так как вибрация передается на околостоящий материал. Посмотрим наглядно.

Чтобы свести данную погрешность в минимуму необходимо проектировать деталь таким образом, чтобы толщина стенки была кратна диаметру сопла. Разница на лицо!

Технологии трехмерной печати

В отношении используемых технологий применяется специальная классификация, которую будет полезно знать каждому будущему владельцу 3д-принтера:

  • FDM;
  • Polyjet или MJM;
  • LENS;
  • LOM;
  • SLA;
  • SLS;
  • 3DP;

FDM

Это самая популярная технология в рассматриваемых устройствах. При FDM (fused deposition modeling) агрегат будет выдавливать расходник через специальное сопло слой за слоем. Сюда входят:

  • мэйкерботоподобные устройства;
  • Stratasys-принтеры;
  • агрегаты, используемые в кулинарии (заправкой идут сырные продукты, тесто, глазурь);
  • медицинские аппараты (медицинский гель с живыми клетками).

Polyjet

Интересен и MJM (Multi Jet Modeling), который подразумевает методику многоструйного моделирования. Процесс похож на обычный струйный из-за подачи материала через небольшие сопла (их может быть несколько сотен). После застывания предыдущего слоя и будет формироваться заданная трехмерная модель.

Расходниками являются фотоплимеры и пластик, подходит и специальный воск. Обычно такую объемную печать применяют в изготовлении медицинских имплантатов, зубных протезов и слепков.

Есть и недостатки использования такой технологии – очень дорогой исходный материал и хрупкий результат. Применение обычно находит в медицине и промышленном прототипировании.

LENS

При LASER ENGINEERED NET SHAPING выдутый из сопла расходник сразу попадает под фокус лазерного луча, что чревато мгновенным спеканием. Использование металлического порошка помогло в изготовлении объектов из стали и титана, что дало возможность эксплуатации 3Д-принтеров в промышленности. Многие сплавы реально перемешивать и получать непосредственно в процессе. Так, например, получают турбиновые титановые лопатки для турбин.

LOM

С Laminated Object manufacturing тонкие и уже проламинированные листы вырезаются лазером, склеиваясь, спекаясь или спрессовываясь в трехмерный объект. Так можно напечатать пластиковые, алюминиевые и бумажные 3D-объекты.

Несмотря на легкость исходного материала, бумажные модели получаются очень прочными, а их себестоимость выйдет практически копеечной. Но сразу надо приготовиться к тому, что такое изделие будет сопровождаться большим количеством отходов. Хотя и последнего можно избежать, если расположить на одном листе сразу несколько небольших объектов.

SLА

Чтобы понять, как работает Stereolithography, надо представить ванну, наполненную жидким полимером. Проходящий по ее поверхности лазерный луч полимеризирует слой. После готовности одного из слоев, платформа опустит деталь, чтобы жидкий полимер заполнил пустоты. Потом ситуация меняется: деталь поднимается наверх, а сам лазер располагается внизу.

Подобный принтер нельзя держать дома:

  • из-за токсичности фотополимера;
  • по причине дороговизны обслуживания.

SLS

Selective laser sintering напоминает вышеописанный вид технологий, но здесь вместо фотополимера используется запекаемый лазером порошок. Можно не опасаться, поломки в процессе работы детали, а в качестве расходника вполне вероятно использовать сталь, нейлон, бронзу, титан, керамику, стекло, литейный воск и другие материалы.

Технология подразумевает создание сложных вещей. Она отлично подходит, например, для создания каких-либо прототипов – например, для ювелирных изделий. Незапеченный порошок будет служить поддержкой для нависающих элементов – значит, не надо формировать какие-то специальные поддерживающие корпусы.

3DP

3DP-метод заключается в нанесении на материал клея, за ним слоя свежего порошка и далее всё по новой. В результате получается похожий на гипс материал (sandstone). Если в этот клей добавить краску, то получатся цветные объекты. Технология безопасна для бытового и офисного использования. Для материалов подойдут стеклянный, костный, резиновый и даже состоящий из древесных опилок порошки.  Можно делать и съедобные фигурки (с использованием шоколадного или сахарного порошков) – только в этом случае берется специальный пищевой клей.

Точность позиционирования экструдера 3D-принтера.

Данный параметр обуславливает точность повторения центром сопла экструдера траектории заданной в G-коде. Другими словами этот параметр характеризует максимально возможное отклонения центра сопла экструдера от траектории во время печати. Этот параметр указывается производителем 3Д-принтера для конкретной модели принтера. Но надо отметить, что указанный параметр соответствует рекомендованной производителем скорости 3Д-печати. В свою очередь специалисты Studia3D при подготовке G-кода сводят влияние данного параметра к минимуму, но не исключают вовсе. Помимо скорости на этот параметр влияет жесткость конструкции 3Д-принтера и система привода экструдера.

Критика и проблемы

Медленно и без гарантий: печать довольно медленная, недостаточно точная. Огромная проблема в любительских принтерах — брак. Например, деталь может отклеиться от подложки прямо во время печати, и произойдёт ад. Или моторы раскалибруются, и сопло начнёт промазывать мимо нужных мест.

Низкая эффективность: чтобы напечатать деталь 10 × 10 см, нужен принтер размером как минимум 50 × 50 см, который будет стоить несколько сотен долларов.

Не самые прочные материалы: 3D-печать пока что ограничена пластиками и смолами. Есть отдельные технологии печати на базе металлического порошка, но если вам нужна стальная деталь — вам нужен не 3D-принтер, а нормальный токарь и станок. Но на станке можно сделать не всякую деталь. 

Не всегда понятно зачем. В промышленности 3D-принтеры используют для прототипирования, но в массовом производстве эти технологии не используются. Для домашнего применения тоже неясно: на 3D-принтерах печатают маленькие пластиковые штучки для любительских проектов… и всё. Очень мало случаев, когда обычный человек мог бы захотеть напечатать у себя дома что-то применимое в хозяйстве.

3.5. Закладка «Support» (поддержки)

В данной закладке находятся настройки поддержек, которые помогают напечатать нависающие элементы модели. Данные настройки относятся только к печати поддержек, ручная установка поддержек настраивается в другом меню, которое будет описано в 4 части инструкции по слайсеру.

Группа настроек «Support Material Generation» (генерация материала поддержек):

  • Галка «Generate Support Material» – включает/выключает генерацию поддержек.
  • Support Extruder – выбор экструдера для печати поддержек.
  • Support Infill Percentage – плотность основной части поддержек в процентах.
  • Extra Inflation Distance – параметр, указывающий на сколько поддержки выходят за пределы детали.
  • Dense Support Layer – параметр, указывающий сколько слоев поддержек с увеличенной или уменьшенной плотностью будут строиться непосредственно под нависающими слоями модели.
  • Dense Infill Percentage – плотность слоя поддержек, которые будут строиться непосредственно под нависающими слоями модели.
  • Print Support Every ___ layers – печать поддержек через N-ое количество слоев. Если в настройке указана 1 – то печать поддержек будет осуществляться на каждом слое. Если, например, в настройке указано 2 – то поддержки будут печататься только каждый второй слой, то есть через слой.

Группа настроек «Separation from Part» (расстояние между поддержками и моделью):

  • Horizontal Offset From Part – расстояние между вертикальными стенками модели и поддержками.
  • Upper Vertical Separation Layers – количество слоев между нависающей частью моделью и поддержками. Если указано значение = 0, то первые нависающие слои модели будут положены прямо на поддержки, что возможно, в зависимости от других настроек поддержек, затруднит отделение поддержек от модели. Если указано значение = 1, то после печати верхней части поддержек будет пропущен один слой, а уже потом напечатается нависающая часть модели. То есть этот параметр — расстояние между верхом поддержек и деталью.
  • Lover Vertical Separation Layers – количество слоев между моделью и печатающихся сверху поддержках, в случае когда поддержки идут модели Если указано значение = 0, то первые слои поддержек будут положены прямо на модель, что возможно, в зависимости от других настроек поддержек, затруднит отделение поддержек от модели. Если указано значение = 1, то после печати части модели, на которой должны быть потом напечатаны поддержки, будет пропущен один слой, а уже потом напечатается поддержки. То есть этот параметр — это расстояние между моделью и низом поддержек.

Группа настроек «Automatic Placement» (параметры автоматической расстановки поддержек):

  • Support Type – тип поддержек, доступны варианты: «Normal» – поддержки будут построены под нависающими частями модели от стола и от частей модели; «From Build Platform Only» – поддержки будет построены только от стола, поддержки от модели построены не будут.
  • Support Pillar Resolution – разрешение (резолюция) поддержек. Это минимальный размер столбика поддержки. Уточнение: – это минимальный размер выступа детали, для которого будет создана поддержка. Т.е. если выступ детали будет менее 2 мм (как установлено на скриншоте), то слайсер не будет автоматически создавать поддержку под этим выступом.
  • Max Overhang Angle – максимальный угол свеса нависающей части модели, под которой будут построены поддержки.

Группа настроек «Support Infill Angles» (угол заполнения поддержек):

  • Кнопка «Add Angle» – добавить угол печати заполнения поддержек.
  • «Remove Angle» – удалить выбранный угол печати заполнения поддержек.

Приведу скриншот для пояснения некоторых пунктов настроек поддержек:

Программная настройка печати

Для создания трёхмерного художественного или промышленного изделия используются два типа программ – компьютерного моделирования и управления 3D принтером. Единый комплект с принтером составляют только программы второго типа, и редактировать какие-либо свойства будущих изделий в них нет возможности. Они снабжены простыми функциями изменения поворота и габаритов изделия, но не более этого. Кроме того, приобретая принтер с простым программным управлением из серии «печать в один лик», покупатель неминуемо получает аппарат с несколько зауженным спектром возможностей. Напротив,  уверенному пользователю ПК не составит труда овладеть навыками работы в более сложных программах управления  3D-печатью. Качество изделий, создаваемых такими аппаратами, выше всяких похвал.

Файлы практически всех 3D принтеров конвертируются в формат STL – в нём же производится обработка изображений изделий принтерными программами. В Интернете существуют тысячи вариантов эскизов будущих изделий на любой вкус и цвет, записанных уже в нужном формате.

В одних трёхмерных принтерах практически все параметры задаются автоматически, в других принтерах для достижения качественной печати  требуется отрегулировать следующие значения:

  • температуру головки и платформы;
  • скорость движения головки, скорость подачи пластика и скорость печати первого слоя;
  • толщины слоя, подложки и стенки;
  • условия включения вентилятора, его интенсивности;
  • настройка поддержек, в том числе, их скорость и интенсивность.

Это не полный перечень настраиваемых характеристик принтера для печати будущего объекта.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
3D-тест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: