Калибровка 3D принтера. Оси X,Y и Z.
Март 14th, 2013 Sam
Следующий этап после калибровки экструдера — это калибровка осей. Единственное, что понадобится — внести изменения в прошивку. Итак, приступим. Открываем в IDE Arduino прошивку Marlin и находим в файле configuration.h следующую строчку:
#define DEFAULT_AXIS_STEPS_PER_UNIT {78.7402,78.7402,200*8/3,760*1.1}
Числа могут быть другие (здесь указаны значения по умолчанию).
строчка в прошивке с переменнымиX-step,Y-step,Z-step,E-step
Напомню формат этой переменной — в скобках указаны числа в порядке X-step,Y-step,Z-step,E-step.
Самое простое — калибровка оси Z. В переменную Z-step надо записать количество шагов двигателя, необходимое для перемещения на 1мм. Берем количество шагов двигателя на полный оборот — 3200 шагов (стандартный двигатель Nema 17 с шагом 1,8 градуса в режиме 1/16 микрошага делает 3200 микрошагов на полный оборот). Если вы решили использовать двигатель в режиме полных шагов, то получится всего 200 шагов на полный оборот.
калибровка оси Z
Далее надо выяснить величину перемещения по оси Z за полный оборот винта, например, я в своем принтере в качестве оси Z использовал шпильку M6 и шаг резьбы у нее ровно 1 мм, значит мне надо записать число 3200. Для шпильки M8 шаг будет 1,25 мм и соответственно количество шагов на 1мм будет равно 3200/1.25=2560.
Далее переходим к калибровке осей X и Y.
калибровка оси X и Y
Здесь все немного сложнее. Т.к. у меня на обеих осях используется одинаковый ремень и одинаковые шкивы, то расчеты будут абсолютно одинаковые. Если у вас стоят разные ремни и разные шкивы, то для каждой оси вам придется делать разные расчеты (как правило, на ремнях указывается их маркировка, по которой можно определить тип шаг зубцов)
Формула простая до безобразия:
XYstep_per_mm=3200/(belt_step*pulley_teeth)
3200 -количество шагов двигателя на полный оборотbelt_step — шаг ремня в мм (т.е. расстояние между зубьями ремня)pulley_teeth — количество зубьев на шкиве
Вот поэтому я рекомендую доставать метрические ремни — с ними проще расчеты и проще калибровка.
Вот что получилось у меня:
ремень T5 — шаг между зубьями 5мм
шкив — 8 зубьев
итого XYstep_per_mm = 3200/(5мм*8)=80
В итоге у меня строчка с данными о шагах выглядит следующим образом:
#define DEFAULT_AXIS_STEPS_PER_UNIT {80,80,3200,504}
Просто и красиво
В случае, если у вас неизвестный ремень, то рекомендую следующее:
Приклейте на стол миллиметровку (бумагу с миллиметровой сеткой), к экструдеру прикрепите иголку.
В Pronterface наберите G0 X100, иголка должна переместиться на 100мм. Если она переместится на другое расстояние, то нужное количество шагов на 1 мм вычисляется просто:
new_X_step= X_step*100мм/(пройденное расстояние в мм)
Аналогично для оси Y.
Дерзайте!
Рубрика 3D принтер
Онлайн сервисы для создания 3D-моделей
Если не хотите устанавливать сложные программы и разбираться в тонкостях 3D-моделирования, то на помощь к вам придут простые и интуитивно понятные онлайн сервисы для создания 3D-моделей:
Мы рекомендуем начать с сервиса Tinkercad от Autodesk, он наиболее прост и понятен в освоении, но в тоже время обладает достаточным функционалом. Как пользоваться подобными сервисами вы можете почитать на очень популярном сайте .
Помимо этого есть компании, которые оказывают услуги по созданию 3D-моделей для печати. Это будет особенно полезно для тех, кто проектирует прототип своего будущего коммерческого изделия. Например, такие услуги оказывает сервис .
Процесс печати
Перед печатью обязательно тщательно промойте стеклянную платформу стола и нанесите на нее свежий адгезив. В нашем случае подойдет обычный спрей – клей от Picaso 3D, однако производитель предлагает и фирменный адгезив:
Далее необходимо подготовить два профиля печати по следующим настройкам, экспериментально они показали наиболее хороший результат при печати.
Wax3D_F – профиль для последующих слоев, Wax3D(1Layer) для первого.
При просчете модели обязательно установите вручную паузу после второго слоя, чтобы успеть переключить профили печати.
Если ранее вы уже печатали воском на текущем принтере, необходимо завести еще один профиль с более высокой температурой и загружать материал только после «проплавки» старого материала.
Оставлять материал в сопле при высокой температуре не рекомендуется. Это чревато пробками.
Изготовление выжигаемых литейных моделей на 3д принтере
Литье по выжигаемым моделям — одна из технологий точного литья. Технология применяется при изготовлении ответственных деталей в таких отраслях промышленности как авиакосмическая, судостроительная, оборонная и других. Использование 3D печати может существенно оптимизировать процессы получения точных отливок.
Технологический процесс литья по выжигаемым моделям похож на технологию литья, в которой используется выплавление восковой модели. Но в случае применения 3д печати используется не воск, а специальный полимер, либо пластик.
На сегодняшний день в нашем распоряжении находятся 2 материала, которые могут быть использованы для печати выжигаемых моделей: распространенный пластик PLA и материал WAX3D компании Filamentarno. Оба материала обладают очень низкой зольностью и уже успешно применяются данного вида литья, а так же совместимы с промышленными 3D принтерами Царь3D.
В случае печати модели из пластика PLA — модель можно только выжигать. А в случае применения материала WAX3D — можно выплавлять как обычный воск, т.к. этот материал был специально разработан для 3D печати выплавляемых моделей.
Применение этого современного материала позволяет использовать напечатанные на 3D-принтере восковки для выжигания без изменения технологического процесса, что особенно важно на крупных предприятиях
«Магические числа»
Автор данного исследования:CHEP. Материал о магических числах является вольным переводом. Вдаваться глубоко в теорию работы шагового двигателя не буду. Это всегда можете найти в сети интернет, иначе получится учебник.
Что же за «магические числа»?
Шаговые моторы на Anycubic i3 MEGA имеют шаг 1.8 градуса, что равно 200 шагам на оборот. Это, если можно так сказать, его «натуральные шаги» или «натуральные положения вала». Эти положения максимально точны.
Микрошаги это дробление каждого шага на некоторое количество шагов. Этим и управляет драйвер двигателя. Микрошаг является менее точным положение. Во-первых, точности привода мешает геометрическая неидеальность ротора и статора двигателя, неидеальные обмотки, зазоры в подшипниках вала и т.п. В результате двигатель выполняет шаги всегда с некоторой погрешностью (как правило, 5% от величины полного шага)
, причем абсолютное значение погрешности постоянно для любого выбранного микрошагового режима! Кроме того, во многих драйверах управление двигателем также далеко от идеального, что приводит к дополнительной неравномерности перемещения в режиме микрошага.
В принтере Anycubic i3 MEGA на оси Z стоят ходовые валы со следующими параметрами:
- Внешний диаметр: 8мм
- Шаг: 2мм
- Подъем гайки за 1 оборот: 8мм
В виду нехитрых расчетов, зная, что двигатель делает 200 шагов на оборот и за этот оборот подъем по оси Z составит 8мм, получаем 8мм/200шагов = 0.04мм. Это и есть «магическое число».
При любой высоте слоя печати кратной 0.04мм (0.12, 0.16, 0.2 и т.д.)
двигатель будет совершать «натуральный шаг», следовательно и самое точное перемещение, что должно в результате дать равномерный слой.
Источник
Требования к 3D-модели для печати
Для того, чтобы принтер мог корректно распечатать модель, она должна соответствовать определенным требованиям в плане качества проектирования:
- правильные нормали – все нормали должны быть направлены изнутри наружу
- два ребра для каждой грани – все грани объекта должны иметь по два ребра
- замкнутая геометрия – все поверхности должны образовывать единый замкнутый объем
- отсутствие внутренних граней – внутри модели не должно быть никаких граней
- совпадение ребер – ребра соприкасающихся полигонов должны быть объединены в одно общее ребро
- отсутствие пересечений полигонов – полигоны не должны пересекаться друг с другом и входить один в другой
- отсутствие нулевых полигонов – полигоны не должны иметь нулевую толщину
Кроме того, каждая компания, которая оказывает услуги 3D-печати, предъявляет свои требования модели – минимальные и максимальные габариты, размер файла и некоторые другие, обязательно ознакомьтесь с ними заранее.
Проверить соответствует ли ваша модель требованиям для 3D-печати, найти и автоматически или вручную исправить ошибки можно с помощью программы , у которой также есть (требуется регистрация). Как ей пользоваться вы можете почитать на известном сайте по 3D-моделированию .
Процесс подготовки модели к печати FDM
Процесс трехмерной печати начинается с подготовки и обработки цифровой 3D-модели. Цифровой образец можно создать вручную с помощью графических программ или автоматически методом 3D-сканирования.
Для построения 3D-модели необходимы следующие данные объекта:
- форма;
- цвет;
- размеры.
Параметры будущего изделия загружаются в STL- файл. С помощью специальных программ-слайсеров цифровая модель «нарезается» на тонкие слои, а STL- файл преобразуется в G-code. Он содержит алгоритмы перемещения экструдера и основные параметры печати:
- температура печатающего модуля;
- толщина (разрешение) слоя;
- форма и размер изделия;
- скорость перемещения печатающей головки;
- степень заполнения детали (пустотелая или сплошная).
Если необходимо, в программу добавляется информация об элементах поддержки, которые печатаются вторым экструдером. После этого программный файл через картридер или USB-порт загружается в принтер, и процесс печати запускается.
Важно! Для создания цифровых моделей, пригодных для 3D-печати, необходимо хорошо ориентироваться в системах CAD-проектирования. Если нет времени осваивать графические редакторы и программы, лучше воспользоваться готовыми трехмерными образцами (платными и бесплатными) из цифровых библиотек Threeding и Shapeways.
Подготовка Picaso Designer X перед печатью Wax Base
Чтобы уверено печатать Wax Base на вашем устройстве, необходимо запастись чистым, желательно новым, блоком экструдера с новым же, или тщательно очищенным медным соплом диаметром не менее 0.4мм. В нашем случае, наиболее подходящим в линейке Picaso 3D является сопло 0.5.
Так же необходимо учесть следующие нюансы:
На принтерах Picaso 3D установлен резиновый чистик, для прочистки ПГ — при печати WAX он размазывает материал и скорее вредит, чем приносит пользу, его необходимо снять.
Для нормальной адгезии нагревательный стол на первом слое должен быть разогрет до 85-90 градусов, последующие слои – необходимо установить на 0-30 градусов, чтобы не деформировать воск. Для этого необходимо иметь два разных профиля материала.
Обдув – требуется при печати нависающих элементов, главное не переборщить, иначе слои будут плохо спекаться.
Wax, как и многие эластомеры не любит ретрактов, этот параметр необходимо установить на 0.
Заправка пластика проходит в два этапа. Первый — заправка на повышенной температуре 190-200 градусов, для устранения возможной восковой пробки. Второй этап- заправка на температуре экструзии – 110-130С
Необходимо помнить, что пластик очень чувствителен к температуре экструзии, слишком высокая забивает сопло, слишком низкая даёт слабую межслойную адгезию. Оптимальная температура на picaso designer x — 115 градусов на первый слой, 120-125 градусов на последующие.
Периодически нужно проверять, не слипается ли нить пластика, намотанная на катушку сама с собой, это может вызвать проскальзывания материала, т.к
он легко вытягивается.
Очень важно правильно выставить высоту сопла над столом, т. к
в случае, если сопло будет пережато, в экструдере быстро образуется пробка, устранить которую получится только перезаправкой пластика заново.
Перед печатью в первый раз обязательно замените хотенд целиком, или сопло на новое / чистое, в противном случае желаемый результат не будет достигнут.
При подготовке 3д модели к печати в Polygon X, необходимо придерживаться следующих правил, старайтесь не делать внешнюю стенку очень тонкой, материал может лопаться. Идеальный вариант – 2 периметра, примерно в 1.2 мм, при сопле 0.5
Процент заполнения, не менее 15%, если позволяет геометрия модели.
В остальном, требования к материалу такие же, как к обычным пластикам. Необходимо отметить, что поддержки отходят очень легко и при необходимости место прикрепления можно обработать горелкой или строительным феном, дабы добиться ровной поверхности.
Текущие модели мы печатали при следующих настройках (на фото выше).
Осталось завести два профиля печати под печать первого и последующих слоев, отправить их на принтер и подождать результатов печати.
Как запрограммировать 3D-принтер
Краткая инструкция по настройке принтера:
- Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
- Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать.
- Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
- Наблюдать за печатью.
Какой принтер подойдет для печати?
В силу физических характеристик исходного сырья нить Filamentarno Wax Base печатается при значительно более низких температурах, нежели другие материалы. Размягчение наступает уже при ~ 45 градусах, а расплавление, от ~ 95 градусов цельсия. Благодаря этому, его легко можно сглаживать при постобработке с помощью строительных фенов, горелок или паяльных станций. Рекомендованный диапазон печати от 110 до 130 градусов, тогда как большинство стандартных 3D принтеров не позволяют опустить температуру экструдера ниже 190, реже 170 градусов цельсия, что является избыточным в случае с Wax base.
Владельцы более простых и дешевых моделей 3д принтеров, как правило имеют возможность подправить соответствующие параметры в аппаратной прошивке принтера, или понизить температуру с помощью специальных управляющих команд. Тем временем дорогие бренды, обычно таких возможностей не предоставляют и полностью закрывают от изменения как прошивку, так и «консольные» команды от пользователей. Вот что пишет производитель на своем сайте в описании материала в этом случае:
«Чаще всего печать на 3D-принтере с температурой сопла ниже 170°С запрещена прошивкой принтера. Для обхода этого ограничения используйте команду G-Code: «M302 S80» — ее можно вставить в стартовый G-Code в настройках слайсера. Эта команда снизит ограничение на температуру печати до 80°С.»
Также, так как материал довольно легко рвется, мягок и легко плавится даже при небольших температурах нагрева Cold End’a, для печати потребуется использовать прямой привод экструдера (Direct), удаленный (Bowden) протяжной механизм с задачей не справится и в лучшем случае «зажует» материал.
Тем не менее, как минимум одну компанию — производителя, позаботившуюся о печати низкотемпературными материалами «из коробки» и обладающую печатающими блоками, оборудованными прямым приводом, мы точно можем назвать. Конечно же, речь идет о Picaso 3D и ее линейке 3д принтеров Series X.
Давайте рассмотрим преимущества линейки Series X для печати воском на примере модели Picaso 3D Designer X.
Закладные элементы
Если в модель требуется ввинчивать болты для её закрепления для формовки, вынимания из ящика или транспортировки, то есть несколько вариантов как это организовать:
- Заложить в модель пазы-колодцы, в которые после печати вставятся гайки. Снаружи отверстия зашпаклевываются.
- Заложить в модель отверстия, в которых после печати будет нарезана резьба и вкручены металлические футорки. Например, внешняя резьба М14, внутренняя М8.
- Вклеить шпильку
Если сравнивать 3D-печать с изготовлением моделей методом фрезеровки, то очевидно, что 3D-печать позволяет обойтись без дорогостоящих ЧПУ-станков, требующих высококвалифицированных операторов. Так же, отпадает необходимость траты времени на изготовление заготовок из дерева или МДФ для фрезеровки. 3D-принтер работает круглосуточно, 7 дней в неделю.
Способ 1: Blender
Blender — первая программа, основное предназначение которой заключается в создании 3D-моделей для дальнейшего их анимирования или применения в разных сферах компьютерных технологий. Она распространяется бесплатно и подходит начинающим юзерам, кто впервые столкнулся с приложениями такого рода, поэтому и занимает эту позицию. Давайте вкратце рассмотрим процедуру подготовки модели для печати пошагово, начав с настройки самого инструмента.
Шаг 1: Подготовительные действия
Конечно, после запуска Blender можно сразу же приступать к ознакомлению с интерфейсом и разработке моделей, однако сначала лучше уделить внимание подготовительным действиям, чтобы настроить рабочую среду под макеты для 3D-принтеров. Эта операция не займет много времени и потребует активации всего нескольких параметров
- Для начала в стартовом окне выберите параметры внешнего вида и расположение элементов, отталкиваясь от личных потребностей.
В следующем разделе окна «Quick Setup» вы увидите разные шаблоны для начала работы и ссылки на источники со вспомогательной информацией, которая пригодится при освоении ПО. Закройте это окно, чтобы перейти к следующему этапу конфигурации.
На панели справа отыщите значок «Scene» и нажмите по нему. Название кнопки появляется через несколько секунд после наведения на нее курсора.
В появившейся категории разверните блок «Units».
Установите метрическую систему измерений и задайте масштаб «1». Это необходимо для того, чтобы параметры сцены перенеслись на пространство 3D-принтера в должном виде.
Теперь обратите внимание на верхнюю панель программы. Там наведите курсор на «Edit» и в появившемся всплывающем меню выберите «Preferences».
В окне настроек переместитесь на «Add-ons».
Отыщите и активируйте два пункта под названиями «Mesh: 3D-Print Toolbox» и «Mesh: LoopTools».
Убедитесь в том, что галочки были успешно проставлены, а затем покиньте данное окно.
Дополнительно рекомендуем обратить внимание и на другие пункты конфигурации. Здесь вы можете настроить внешний вид программы, поменять расположение элементов интерфейса, трансформировать их или вовсе отключить
По завершении всех этих действий переходите к следующему шагу.
Шаг 3: Проверка проекта на соблюдение общих рекомендаций
Перед завершением работы над моделью мы советуем не упускать самые важные аспекты, которые следует выполнять для оптимизации проекта и обеспечения его корректной распечатки на принтере. Для начала убедитесь, что ни одна из поверхностей не накладывается друг на друга. Они должны лишь соприкасаться, образуя единый объект. Если где-то произойдет выход за рамки, вероятны проблемы с качеством самой фигуры, поскольку в неправильно оформленном месте произойдет небольшой сбой печати. Для удобства вы всегда можете включить отображение прозрачной сети, чтобы проверить каждую линию и поле.
Далее займитесь уменьшением количества полигонов, ведь большое количество этих элементов лишь искусственно усложняет саму фигуру и мешает оптимизации. Конечно, избегать лишних полигонов рекомендуется еще при создании самого объекта, но не всегда получается сделать это на текущем этапе. Вам доступны любые способы данной оптимизации, о чем тоже написано в документации и рассказывается в обучающих материалах от независимых пользователей.
Теперь хотим отметить и тонкие линии или какие-либо переходы. Как известно, само сопло имеет определенный размер, что зависит и от модели принтера, а пластик не является самым надежным материалом. Из-за этого лучше избегать наличия совсем тонких элементов, которые в теории могут вообще не получиться на печати или будут крайне хрупкими. Если такие моменты присутствуют в проекте, слегка увеличьте их, добавьте опору или по возможности избавьтесь.
Шаг 4: Экспорт проекта
Завершающий этап подготовки модели для печати — экспорт ее в подходящем формате STL. Именно этот тип данных поддерживается 3D-принтерами и будет корректно распознан. Никакого рендеринга или дополнительных обработок можно не осуществлять, если для проекта уже были назначены цвета либо какие-либо простые текстуры.
- Откройте меню «File» и наведите курсор на «Export».
В появившемся всплывающем списке выберите «Stl (.stl)».
Укажите место на съемном или локальном носителе, установите название для модели и нажмите на «Export STL».
Проект сразу же будет сохранен и доступен для выполнения других действий. Теперь вы можете вставить флешку в принтер или подключить его к компьютеру, чтобы запустить выполнение имеющегося задания. Советов по его настройке мы давать не будем, поскольку они сугубо индивидуальны для каждой модели устройств и четко прописаны в инструкциях и различных документациях.
Редакторы для 3D-моделирования
Первое, что вам понадобиться для создания 3D-модели это любой подходящий графический редактор, который позволяет сохранять файлы в формате STL (для одноцветной печати) или WRL (для цветной печати из гипса).
Такие форматы поддерживаются многими популярными программами для 3D-моделирования, в том числе и бесплатными:
- (платная)
- (платная)
- (платная)
- (платная)
- Rhinoceros 3D (платная)
- (бесплатная)
- (бесплатная)
- (бесплатная)
- (бесплатная)
- (бесплатная)
Если у вас есть одна из таких программ и вы уже владеете некоторыми навыками работы, то для вас это не будет проблемой. Если нет, то посмотрите какая программа больше подходит под ваши модели.
Для новичков мы можем порекомендовать начать со SketchUp (она попроще в освоении), а затем по необходимости переходить на Blender (это ПО с большими возможностями, но требует предварительного изучения).
Где применяют 3D-печать
В основном в профессиональных сферах.
Строительство. На 3D-принтерах печатают стены из специальной цементной смеси и даже дома в несколько этажей. Например, Андрей Руденко еще в 2014 году напечатал на строительном принтере замок 3 × 5 метров. Такие 3D-принтеры могут построить двухэтажный дом за 20 часов.
Медицина. О печати органов мы уже упоминали, а еще 3D-принтеры активно используют в протезировании и стоматологии. Впечатляющие примеры — с помощью 3D-печати врачам удалось разделить сиамских близнецов, а кошке без четырех лап поставили протезы, которые напечатали на принтере.
Подробнее о 3D-принтинге в медицине можно узнать в статье издания 3D-Pulse.
Космос. С помощью трехмерной печати делают оборудование для ракет, космических станций. Еще технологию используют в космической биопечати и даже в работе луноходов. Например, российская компания 3D Bioprinting Solutions отправит в космос живые бактерии и клетки, которые вырастят на 3D-принтере. Создатель Amazon Джефф Безос презентовал прототип лунного модуля с напечатанным двигателем, а космический стартап Relativity Space строит фабрику 3D-печати ракет.
Авиация. 3D-детали печатают не только для космических аппаратов, но и для самолетов. Инженеры из лаборатории ВВС США изготавливают на 3D-принтере авиакомпоненты — например, элемент обшивки фюзеляжа — примерно за пять часов.
Архитектура и промышленный дизайн. На трехмерных принтерах печатают макеты домов, микрорайонов и поселков, включая инфраструктуру: дороги, деревья, магазины, освещение, транспорт. В качестве материала обычно используют недорогой гипсовый композит.
Одно из необычных решений — дизайн бетонных баррикад от американского дизайнера Джо Дюсе. После терактов с грузовыми автомобилями, которые врезались в толпу людей, он предложил макет прочных и функциональных заграждений в виде конструктора, которые можно напечатать на 3D-принтере.
Изготовить прототип помогла компания UrbaStyle, которая печатает бетонные формы на строительных 3D-принтерах
Образование. С помощью 3D-печати производят наглядные пособия для детских садов, школ и вузов. В некоторых московских школах с 2016 года есть трехмерные принтеры: на уроках химии дети разглядывают 3D-модели молекул и проводят реакции в напечатанных пробирках, на физике изучают электрическую цепь на 3D-прототипе токопроводящего стенда, а еще сами печатают себе ручки на уроках ИЗО.
Узнать больше о 3D-технологиях в школах можно на сайте «Ассоциации 3D-образования».
А еще 3D-печать помогает в быту, производстве одежды, украшений, картографии, изготовлении игрушек и дизайне упаковок.
Как устроен 3D-принтер
В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина.
Вот из каких деталей состоит 3D-принтер, не считая корпуса:
- экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей;
- рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
- линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
- фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
- рама — соединяет все элементы принтера.
Все это управляется компьютером.
Результат и вывод
При печати мы несколько раз столкнулись с расслоениями и отклеиванием материала от нагревательного стола в процессе печати и подбора параметров.
Как видно на фото, материал расходится по слоям и может возникнуть ощущение, что температура недостаточна для спекания. Тем не менее это не так, ведь при повышении температуры, материал не экструдируется, а вытекает из фильеры, из-за чего нарушается структура слоя, а воск не успевает остыть. Различие отлично видно на фото ниже, слева температура через чур высока.
Тем не менее, после нескольких повторных печатей, нам удалось добиться хорошего качества печати. Как с поддержками, так и без них.
Довольно крутые углы наклона материал выдерживает «на отлично», что видно по этому фланцу на фото.
Не чужд материалу и художественный подход, голову данного персонажа мы печатали около суток и, как видите результат отличный.
В общем и целом, при печати изделий не высокой детализации, лучше всего выбирать медленную (профиль качество) или среднюю (профиль стандарт) настройку скорости печати, дабы материал успевал правильно формироваться и остывать при экструзии. Иначе могут образовываться наплывы «вытягивание» нити.
По результатам наших экспериментов, мы подтвердили ожидания на счет удобства использования Picaso 3D Designer X для печати Wax Base, этот 3д принтер идеально подходит для задач подобного рода и в портфеле наших покупателей уже есть несколько успешных примеров применения этой связки в производстве.
Если Вас заинтересовал данный материал, вы занимаетесь литейным производством, или хотите открыть свой / модифицировать уже существующий бизнес, смело рассматривайте к покупке одно из устройств линейки Series X, в зависимости от ваших задач. Это могут быть модели с большой рабочей областью – Designer Xl и Xl Pro, или хорошо знакомые Designer X и X Pro. Все эти модели обладают необходимыми условиями для успешной печати данным материалом и наши опыты это подтверждают.