Слово как написать стартовый g code — однокоренные слова и морфемный разбор слова (приставка, корень, суффикс, окончание):

Вспомогательные (технологические) команды

Код Описание Пример
M00 Приостановить работу станка до нажатия кнопки «старт» на пульте управления, так называемый «безусловный технологический останов» G0 X0 Y0 Z100 M0
M01 Приостановить работу станка до нажатия кнопки «старт», если включён режим подтверждения останова G0 X0 Y0 Z100 M1
M02 Конец программы, без сброса модальных функций M02
M03 Начать вращение шпинделя по часовой стрелке M3 S2000
M04 Начать вращение шпинделя против часовой стрелки M4 S2000
M05 Остановить вращение шпинделя M5
M06 Сменить инструмент T15 M6
M07 Включить дополнительное охлаждение M3 S2000 M7
M08 Включить основное охлаждение. Иногда использование более одного M-кода в одной строке (как в примере) недопустимо, для этого используются M13 и M14 M3 S2000 M8
M09 Выключить охлаждение G0 X0 Y0 Z100 M5 M9
M13 Включить охлаждение и вращение шпинделя по часовой стрелке S2000 M13
M14 Включить охлаждение и вращение шпинделя против часовой стрелки S2000 M14
M17 Конец подпрограммы M17
M25 Замена инструмента вручную M25
M97 Запуск подпрограммы, находящейся в той же программе (где P — номер кадра, в случае примера переход осуществится к строке N25), действует не везде, предположительно — только на станках HAAS M97 P25
M98 Запуск подпрограммы, находящейся отдельно от основной программы (где P — номер подпрограммы, в случае примера переход осуществится к программе O1015) M98 P1015
M99 Конец подпрограммы M99
M30 Конец программы, со сбросом модальных функций M30

не больше одного кода в кадре

Параметры команд

Параметры команд задаются буквами латинского алфавита

Код Описание Пример
X Координата точки траектории по оси X G0 X100 Y0 Z0
Y Координата точки траектории по оси Y G0 X0 Y100 Z0
Z Координата точки траектории по оси Z G0 X0 Y0 Z100
P Параметр команды G04 P101
F Скорость рабочей подачи.

Для фрезерных станков это дюймы в минуту (IPM) или миллиметры в минуту (mm/min),

Для токарных станков это дюймы за оборот (IPR) или миллиметры за оборот (mm/rev).

G1 G91 X10 F100
S Скорость вращения шпинделя S3000 M3
R Параметр стандартного цикла или радиус дуги (расширение стандарта) G81 R1 0 R2 −10 F50 или G2 G91 X12.5 R12.5
D Параметр коррекции выбранного инструмента G1 G41 D1 X10. F150.
L Число вызовов подпрограммы M98 L82 P10 или G65 L82 P10 X_Y_R_
I Параметр дуги при круговой интерполяции. Инкрементальное расстояние от начальной точки до центра дуги по оси X. G03 X10 Y10 I0 J0 F10
J Параметр дуги при круговой интерполяции. Инкрементальное расстояние от начальной точки до центра дуги по оси Y. G03 X10 Y10 I0 J0 F10
K Параметр дуги при круговой интерполяции. Инкрементальное расстояние от начальной точки до центра дуги по оси Z. G03 X10 Y10 I0 K0 F10
L Вызов подпрограммы с данной меткой

Требования к написанию программы

Программы, которые пишут для станка с ЧПУ на основе использования  джи кодов, имеют определенную совершенно четкую структуру, которая состоит из нескольких команд. Все команды для работы со станком объединяются по группам – кадрам. Завершение одного кадра отмечается символом CR/LF, программу заканчивает вспомогательный код М02 или М30.

Если к программе необходимо сделать комментарий, то его размещают в круглых скобках. К примеру, (перемещение к точке начала фрезерования). Комментарий может находиться сразу после кода, но можно также и вынести его в отдельную строку.

Генерированием кодов для работы за станком на производстве занимаются специальные программы. На каждом предприятии такая система действует отлажено и ее контролирует оператор. При необходимости любую программу можно сгенерировать самостоятельно с помощью специального программного обеспечения, которое можно скачать в интернете.

Никаких специальных знаний для этого не потребуется, достаточно иметь представление о декартовой системе координат, знать физические величины и определения из курса геометрии. В качестве примера можно воспользоваться уже готовой программой. Для работы потребуются таблицы с расшифровкой кодов.

Для создания  кода необходимо иметь следующие знания:

  • введение геометрических параметров и размеров обрабатываемой детали;
  • знать параметры инструментов и устройств, с помощью которых осуществляется работа;
  • толщина слоя, которую потребуется снять;
  • глубина введения инструмента для проделывания прорезей.

На практике такие действия произвести несложно. Для того чтобы понять как устроена система, можно посмотреть пример записи команд, потребуется также вспомогательная таблица с кодами.

Существуют специальные сервисы, позволяющие создавать программы для станков онлайн, их можно генерировать на готовом примере. Никакое дополнительное программное обеспечение устанавливать на компьютер не потребуется. Все, что нужно, это выход в интернет. При программировании требуется особая внимательность, если ошибиться в ведении числового показания, можно повредить деталь или сломать станки. Программы, созданные таким образом, можно использовать на токарных, фрезерных, плазменных станках и обрабатывать самые разные материалы.

В целом, мы видим следующие категории различий между диалектами G-Code:

— Поддержка G-кода.

Не все контроллеры поддерживают все G-коды. Например, многие ранние токарные станки не поддерживают G71 и подобные циклы черновой обработки.

— Параметры и макропрограммирование.

Параметрическое программирование с помощью макросов появилось после того, как были установлены основные стандарты. Fanuc Macro B, пожалуй, самый распространенный стандарт для него. Многие элементы управления очень ограничены в своих возможностях, связанных с программированием макросов, и существует множество различий в деталях, касающихся того, как именно работают макросы.

— Параметры.

Многие G-коды нуждаются в дополнительной информации, чтобы выполнять свою работу, поэтому они используют другие слова (буквы) для сбора этой информации. Какие именно слова собирают, какая информация может варьироваться от одного элемента управления к другому.

— Форматирование.

Некоторые элементы управления позволяют G0 или G00. Некоторые настаивают на G00. Некоторые допускают числа без десятичной дроби, другие настаивают на десятичной или даже на конце нуля. «1», «1.» и «1.0» — все варианты, которые могут быть приняты, отклонены или необходимы при указании числа 1.

Для простых программ и использования MDI, очевидно, многое из этого не имеет значения. Но для написания сложного рукописного G-кода или для того, чтобы понять, почему G-код, который выдает ваша CAM-программа, не совсем верен, вам нужно знать о проблемах диалекта.

CAM программа использует так называемый постпроцессор для работы с диалектами g-кода. Роль постпроцессора заключается в переводе идеализированного языка, который обычно является внутренним для программного обеспечения CAM, на определенный диалект g-кода.

Алгоритмический подход

Возможно я еще начинающий Gкодер, но наука о программировании не менялась с момента ее появления. И она требовала составлять алгоритмы и избегать больших линейных блоков кода.

Так например, я достиг цели и обработал свой Жертвенный стол получив код программы на сайте, где был предоставлен доступ к on-line генератору кода. И это был файл размером в мегабайт. Читать не возможно. Одни и теже коды повторяли «зиг-заги». Включить в него что-либо, например замедление когда фреза доходит до вкрученной в стол футорки — невозможно.

Куда проще и понятнее выглядит функция, приведенная в статье про Жертвенный стол. В ней все наглядно и понятно. Для чего же еще нужен компьютер, если не для генерации кода по мере необходимости?

Иными словами, я испробовал и «прямой» подход с генерацией миллиона линейных команд и алгоритмический, требующий приложения мозга. Второй вариант мне подходит, а первый — постараюсь избегать.

ПО 3D Slicer Slic3r

Также есть невероятное новое заполнение сот, которое создается в трех измерениях: первый раз, когда шаблон заполнения, который может быть изменен между слоями, вместо повторения одного и того же шаблона. Это может значительно повысить прочность внутреннего заполнения и окончательной печати.

Еще одной особенностью является непосредственная интеграция с OctoPrint. Когда файлы разрезаны на рабочем столе пользователя, их можно загрузить прямо в окно OctoPrint пользователя одним нажатием кнопки.

Достоинства. Программное обеспечение достаточно быстро даже на медленных компьютерах. Если вы изменяете настройку, программное обеспечение рассчитывает только затронутые детали. Он включает в себя инкрементальный срез в реальном времени, предварительный просмотр в 3D, предварительный просмотр траектории в 2D и 3D, заполнение 3D-сот, интеграцию с OctoPrint, регулирование давления и многое другое.

Недостатки. На данный момент нет никаких временных и оценок печати.

Подходит для экспертов и профессионалов в области 3D-печати.

Сайт. www. slic3r. org

Цена Бесплатно

ОС Windows, Mac, Linux

IF: Conditional Branching

While GOTO represents an “unconditional branch” in G-Code execution, IF allows for “conditional branching”. Imagine being able to ask a question, and perform the GOTO only if the answer to the question is “Yes”. In essence, that’s what the IF does:

IF GOTO x

The entity enclosed in the square brackets is called a “conditional expression”, and they don’t really look like “condition is true”, that’s just an English translation of their general form.

Instead, Conditional Expression consist of a comparison of some kind:

IF GOTO 110

GOTO 200

That “” is a conditional expression that checks whether the value of #100 is zero. If it is, the G-Code will perform a GOTO taking it to N110. If its value isn’t zero, the G-Code falls through to the next line, which we see is an alternate GOTO that takes us to N200. That’s how conditional branching with IF and GOTO work together. Note that the line following the IF statement could have been anything, it doesn’t have to be a GOTO.

But what if we wanted to do something other than “GOTO” if #100 is equal to zero? Perhaps we simply want to change the value of #100 so it isn’t zero, avoiding a potential divide by zero problem down the line. When we want to do something other than GOTO, we use an “IF..THEN” statement:

IF THEN #100 = 1 (Avoid dividing by zero!)

#110 = #105 / #100

We can put any macro expression after the THEN, but no g or m-codes. If you want g or m-codes, use the GOTO’s to arrange to go to lines containing those codes.

Canned Cycles

The last aspect of G-code to touch on is canned cycles. These are similar to methods or functions in computer programming. They allow you to perform a complicated action in only a few lines of code without having to type out all of the details.

Take for example the canned cycle below. Here we are telling the CNC tool to create a hole with a peck drill in only two lines of code on the left. This same action takes over 20 lines of regular G-code.

Some common drill cycles includes:

G81 – Simple Drill Cycle

This cycle will make a hole by plunging to a specific Z-axis coordinate and then retracting. Programming this cycle requires a depth, feed rate, XY coordinates, and plane to drill on.

G83 – Peck Drill

This cycle is used for quickly drilling deep holes. A tool will first drill a defined distance and then retract, which clears any material out of the hole and allows coolant to flush away chips. The simplest implementation of this cycle requires an initial height, feed plane, peck increment, and depth.

G98 – Return to Initial Rapid Height

This cycle will retract a tool to a clearance plane between holes which helps to avoid clamps. Programming this cycle requires an initial height and feed plane to drill on.

Какие бывают G-коды

Программы с G-кодом пишутся в виде текстового формата, каждую строчку называют кадром. Кадр состоит из буквенного символа – это адрес и цифра, в которой выражено числовое значение. Коды бывают основными и вспомогательными. На основе такой программы работает токарный и фрезерный станок с ЧПУ.

Команды группы G называют подготовительными. Они задают движение рабочих элементов на станке с определенной скоростью. Скорость может быть круговой или линейной. Также G-код используется для обработки отверстий и резьбы. Еще одной функцией является управление параметрами и координатными системами аппаратуры.

Основные команды программы направлены на выполнение следующих функций:

  • G00 – G04 функция позиционирования;
  • G17 – G19 осуществляют переключение рабочих параметров;
  • G40 – G44 компенсация длины и диаметра разных элементов аппарата;
  • G54 – G59 переключение координатных систем;
  • G71 – функция обработки отверстий;
  • G80 – G84 функция нарезания резьбы и сверления;
  • G90 – G92 переключение абсолютной и относительной систем координат.

Символы бывают разными: М выполняет вспомогательные функции, такая команда необходима для смены инструмента, вызова подпрограммы и ее завершения, S – это функция основного движения, F – подача, Т, D, Н являются выражением функций инструмента.

Значение символа зависит от вида станка с ЧПУ. Программирование осуществляется на основе этих кодов.

Принцип кодировки команд для 3D-принтера

https://youtube.com/watch?v=o0ooFNlSAm8

Каждая строка G-кода — это команда, которую выполняет 3D-принтер. Если ваш принтер “делает что-то не так”, а механика его при этом исправна и настроена правильно, скорее всего дело в коде, где-то в него закралась неверная или находящаяся не на своем месте команда.

Рассмотрим типичную команду:

G1 X-9.2 Y-5.42 Z0.5 E0.0377

В этой кодировке содержится следующая информация:

  • G1 — перемещаться по прямой;

  • Координата X — -9,2 мм;

  • Координата Y — -5,42 мм;

  • Координата Z — 0,5 мм;

  • Экструзия — 0,0377 мм.

Как видно на примере, кодировка G-code имеет простой синтаксис. Разобраться в командах может любой пользователь и помнить их все не обязательно — достаточно иметь под рукой список.

Рекомендуем заглянуть в “Энциклопедию Тридэшника” Там можно найти описание и параметры большинства команд.

Когда необходимо использование G-кода

Слайсеры в абсолютном своем большинстве выдают корректный G-код, он в процессе печати обеспечивает великолепный результат, но также есть вероятность, что ручная правка G-код имеет преобладание перед слайсером в следующих случаях:

  • Когда невозможно разобраться в настройке слайсера выдающего ошибку. Это точечная правка файла подготовленного для печати сложной и большой модели.
  • Необходимость изменить температуру экструдера в определенное время печати, если производятся деликатные или определенно важные области ожидаемой модели. Эта специальная настройка используется при отсутствии этого функционала слайсером.
  • При возникновении сложностей на этапе печати сложной большой детали, добавляется специальная команда, к примеру, включить или выключить обдув. Подобное действие решит проблему.

Популярные команды G-code

G28 — вернуться в исходное положение

Эта команда сообщает 3D-принтеру о необходимости вернуться в нулевую точку. С этой команды начинается работа 3D-принтера, а также этой командой заканчивается печать. Печатающая головка перемещается в дальний угол печатной камеры, чтобы пользователь мог легко извлечь деталь.

G1 — линейное движение

С этой команды начинается около 95% строк в файле для печати. Команда G1 задает и направление перемещения печатающей головки. В этой же строке может содержаться команда E, которая указывает, сколько филамента (в миллиметрах) необходимо протолкнуть в сопло. Также в строке можно указать команду F, которая задает скорость движения в миллиметрах в минуту.

Пример: G1 X30 E10 F1800 — протолкнуть 10 мм филамента в экструдер, пока печатающая головка перемещается на 30 мм по координате X со скоростью 1800 мм/мин.

G92 — установить текущее положение

Команда задает текущее положение осей. Одно из наиболее распространенных применений команды — это ось E (положение филамента). Если переопределить текущее положение нити, то все будущие команды будут определяться по новому значению. Обычно это делается в начале каждого слоя.

Пример: G92 E0 — установить текущее положение нити в качестве нулевого.

M104 и M109 — температура экструдера

Команды M104 и M109 задают температурные значения в градусах Цельсия (S) для экструдера (экструдеров). При использовании команды M104 3D-принтер может производить другие действия в процессе нагрева. Команда M109 указывает принтеру не предпринимать других действий, пока не будет достигнута заданная температура. При использовании 3D-принтера с двумя экструдерами используются команды T0 для установления температуры правого экструдера и T1 — для левого.

Пример: M104 S190 T0 — начать разогревать правый экструдер до температуры 190 °C.

M140 и M190 — температура рабочего стола

Эти команды указывают на необходимость нагреть рабочий стол до заданной температуры в градусах Цельсия (S). Аналогично примеру выше, команда M140 будет выполняться 3D-принтером одновременно с другими процессами, а команда M190 указывает на необходимость ожидания, пока рабочий стол не будет нагрет до заданной температуры.

Пример: M140 S50 — разогревать рабочий стол до 50 °C.

M106 — скорость вращения кулера

Эта команда задает скорость вращения кулера, который охлаждает изделие. Скорость вращения (S) устанавливается в диапазоне значений от 0 (выключен) до 255 (максимальная скорость).

Пример: M106 S128 — включить кулер на скорости 50%.

Самые распространенные команды G-code

Вы можете создать несколько строк кода, комбинируя различные инструкции, составляющие язык. Каждая строка кода представляет собой инструкцию, которую должен выполнить 3D-принтер. Например, G1 X10 F3600. Эта строка кода указывает принтеру переместить экструдер в положение X = 10 мм от станины со скоростью 3600 мм / мин.

Мы также можем создать много строк кода, каждая из которых будет указывать на разные инструкции для принтера. Например:

  1. G1 X0 Y0 F2400. Переместить экструдер – положение X = 0 и Y = 0 станины со скоростью 2400 мм / мин.
  2. G1 Z10 F1200. Переместить ось Z – положение Z = 10 мм со скоростью 1200 мм / мин.
  3. G1 X30 E10 F1800. Пропустить 10 мм через сопло, перемещая экструдер – положение X = 30 мм.

Эти 3 строки кода дают задачу 3D-машине двигаться в положениях, указанных в командах, и с указанной скоростью. Каждая строка кода состоит из различных комбинаций букв и цифр. Каждая комбинация сообщает принтеру что-то особенное.

Цифры указывают значение выполняемой G-code команды 3d принтера. Для обозначений G и M числа изменяют тип команды. Давайте посмотрим на некоторые случаи, примеры G-кода для mach3:

  • Число 3600 указывает значение скорости, с которой должен двигаться рычаг 3D-принтера. В данном случае это 3600 мм / мин.
  • X15, Y10. В этом случае 15 указывает миллиметры, на которые экструдер должен перемещаться по оси X, а 10 означает, что он должен перемещаться на 10 мм по оси Y.
  • В этом случае принтер должен поднять экструдер на 10 мм по оси Z.
  • Как и в случае с командой G, число 104 в команде M не представляет геометрическое значение, а используется для обозначения функции, которую необходимо выполнить. M104 – это машинная команда, используемая для запуска нагрева экструдера.
  • Команды E, F, X, Y или Z вместе с номерами их значений служат аргументами для команд G и M. Например: G1 E10 F800. G1 – это команда G, определяющая линейное движение. E10 и F800 – это аргументы команды, определяющие проталкивание нити на 10 мм через сопло со скоростью 800 мм / мин соответственно.
  • G2 начинает движение экструдера по часовой стрелке до определенного положения. В качестве аргумента задаются координаты конечного местоположения экструдера и его оси вращения с параметрами.
  • Параметр I указывает, насколько ось X перемещается от своего текущего положения.
  • Параметр J устанавливает, насколько ось Y перемещается от своего текущего положения. Например: G2 X15 Y5 I0 J-12. Экструдер должен совершить круговое движение по часовой стрелке. У вас будет центральная ось, перемещающаяся на 0 мм по оси X и -12 мм по оси Y. Движение заканчивается, когда экструдер достигает положений X = 15 мм и Y = 5 мм.
  • Команда G3 использует те же параметры, но указывает, что круговое движение должно выполняться против часовой стрелки. Например: G3 X-20 Y10 I1 J-15. Команды G90 и G91 – режим позиционирования экструдера Перед запуском движения экструдера вы должны указать, является ли движение абсолютным или относительным.
  • Для абсолютного перемещения экструдер перемещается в определенное место по осям X, Y, Z и E. Команда G90 используется для указания абсолютного перемещения. Пример: G1 X25 F3600 E0.02. Относительное движение означает, что экструдер продвинется на несколько миллиметров по одной из осей от своего текущего положения. Это указывается с помощью команды G91, как показано в следующем примере: G1 X10 Y10 F2400.
  • G92 – установить текущую позицию. G92 используется для регулировки текущего значения любой из осей или функций до желаемого значения. Например, вы можете сообщить 3D-принтеру, что нить находится в позиции 0 мм в экструдере, как показано ниже.
  • G92 E0 – отрегулируйте положение нити на 0 мм. В этом случае аргумент указывает тип требуемой функции или перемещения. Вместо E вы можете использовать координаты X, Y или Z для регулировки положения экструдера.

Справка! G20 устанавливает размеры в дюймах, а G21 – в миллиметрах.

А теперь рассмотрим самые важные M-команды:

  • M104 запускает нагрев экструдера и одновременно позволяет 3D-принтеру выполнять другие действия. Например:
  • M109 выполняет нагрев экструдера, но не позволяет выполнять другие действия, пока не будет достигнута запрограммированная температура.
  • M106 – отрегулировать скорость вентилятора. Чтобы управлять вентилятором, направленным на печатаемый объект, мы можем использовать команду M106 следующим образом:
  • M106 S255. Вентилятор установлен на максимальную скорость. В этом случае S указывает скорость вентилятора, а 255 – максимальное значение скорости, где 255 = 100% скорости.
  • M112 – аварийная остановка. Когда ситуация выходит из-под контроля, можно использовать команду M112, чтобы немедленно остановить процесс печати. При подаче этой команды двигатели и нагреватели охлаждаются.

Популярные команды G-code

G28 — вернуться в исходное положение

Эта команда сообщает 3D-принтеру о необходимости вернуться в нулевую точку. С этой команды начинается работа 3D-принтера, а также этой командой заканчивается печать. Печатающая головка перемещается в дальний угол печатной камеры, чтобы пользователь мог легко извлечь деталь.

Пример: G28.

G1 — линейное движение

С этой команды начинается около 95% строк в файле для печати. Команда G1 задает и направление перемещения печатающей головки. В этой же строке может содержаться команда E, которая указывает, сколько филамента (в миллиметрах) необходимо протолкнуть в сопло. Также в строке можно указать команду F, которая задает скорость движения в миллиметрах в минуту.

Пример: G1 X30 E10 F1800 — протолкнуть 10 мм филамента в экструдер, пока печатающая головка перемещается на 30 мм по координате X со скоростью 1800 мм/мин.

G92 — установить текущее положение

Команда задает текущее положение осей. Одно из наиболее распространенных применений команды — это ось E (положение филамента). Если переопределить текущее положение нити, то все будущие команды будут определяться по новому значению. Обычно это делается в начале каждого слоя.

Пример: G92 E0 — установить текущее положение нити в качестве нулевого.

M104 и M109 — температура экструдера

Команды M104 и M109 задают температурные значения в градусах Цельсия (S) для экструдера (экструдеров). При использовании команды M104 3D-принтер может производить другие действия в процессе нагрева. Команда M109 указывает принтеру не предпринимать других действий, пока не будет достигнута заданная температура. При использовании 3D-принтера с двумя экструдерами используются команды T0 для установления температуры правого экструдера и T1 — для левого.

Пример: M104 S190 T0 — начать разогревать правый экструдер до температуры 190 °C.

M140 и M190 — температура рабочего стола

Эти команды указывают на необходимость нагреть рабочий стол до заданной температуры в градусах Цельсия (S). Аналогично примеру выше, команда M140 будет выполняться 3D-принтером одновременно с другими процессами, а команда M190 указывает на необходимость ожидания, пока рабочий стол не будет нагрет до заданной температуры.

Пример: M140 S50 — разогревать рабочий стол до 50 °C.

M106 — скорость вращения кулера

Эта команда задает скорость вращения кулера, который охлаждает изделие. Скорость вращения (S) устанавливается в диапазоне значений от 0 (выключен) до 255 (максимальная скорость).

Пример: M106 S128 — включить кулер на скорости 50%.

Как отредактировать G-code?

Для редактирования G-code можно использовать различные оффлайн- и онлайн-программы. Рассмотрим основные инструменты.

Бесплатная программа, в которой можно настроить выделение синтаксиса G-code. ПО доступно для ОС Windows.

gCodeViewer

Облачное приложение, которое оптимизировано для создания команд для 3D-принтеров. Среди специфических функций — послойный просмотр изделия в 2D-режиме.

Simplify3D

Популярный слайсер, имеет собственный редактор G-code. Пользователю доступно создание автоматических сценариев, например — стандартное выполнение 3D-принтером определенных действий в начале и в конце процесса печати.

Дроби круга, квадранты и регуляторы

Первое, что нужно знать о дуге, это то, что невозможно указать дугу более 360 градусов. В некоторых контроллерах для спиральной интерполяции есть некоторые исключения (см. Ниже) просто потому, что это может быть полезно для спиралей. Если требуется полный круг, установите начальную и конечную точки равными друг другу:

G02 X3.25 Y2.0 I-1.25 J0

Интересно, что вы не можете указать полный круг с помощью «R». Это связано с тем, что существует бесконечное количество кругов, которые начинаются и заканчиваются в одной и той же точке определенного радиуса, поэтому контроллер не знает, какой круг может быть правильным.

Есть еще более забавный ньюанс с «R» и более крупными дугами. Например, дуга все еще может иметь определенный радиус и по часовой стрелке (или против часовой стрелки), но центр будет разным, если вы перемещаетесь более чем на 90 градусов. Например:

Учитывая два показанных варианта, контроллер выбирает путь на основе знака радиуса. Отрицательное получает более длинную дугу, положительное — короче. Отрицательный знак заставляет контроллер искать дугу более 180 градусов.

Некоторые контроллеры еще более чувствительны и не будут программировать дугу, пересекающую линию квадранта. Следовательно, наибольший угол, по которому может следовать дуга, составляет 90 градусов, и этот угол не должен пересекать 0, 90, 180 или 270 градусов. Углы в 90 градусов, пересекающие линию квадранта, должны быть разбиты на две части, причем соединение между частями должно быть прямо на линии квадранта.

Полные круги без XYZ

Полные круги появляются, когда начальная и конечная точки идентичны, а центр указан через IJK (помните, что R ведет к бесконечному количеству кругов). Учитывая, что вы хотите, чтобы начальная и конечная точки были одинаковыми, возможно, вам не придется беспокоиться даже об указании конечной точки с помощью XYZ. Некоторым контроллерам это может потребоваться, но большинству — нет. Вот простая программа с g-кодом, которая таким образом создает 3 круга:

N45 G0 X-2. Y.75N46 G1 Z-.5 F10.N47 Y.5 F30. S2000N48 G2 J-1.1N49 G1 Y.75N50 Z.2N51 G0 X.75 Y-3.4N52 G1 Z-.5 F10.N53 X.5 F30.N54 G2 I-1.1N55 X.75N56 Z.2N57 G0 X-4.75 Y-3.4N58 G1 Z-.5 F10.N59 X-4.5 F30.N60 G2 I1.1N61 G1 X-4.75N62 Z.2

А вот как выглядит визуализация:

Совет по упрощению программирования дуги: начните с сегментов

Когда я прокладываю траекторию инструмента, я предпочитаю оставлять дуги напоследок. Вместо каждой дуги я просто помещаю отрезок линии, конечные точки которого соответствуют конечным точкам дуги. Это позволяет быстро собрать грубый набросок траектории инструмента, и часто кажется, что легче вернуться и преобразовать линии в дуги, когда базовая структура уже установлена.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
3D-тест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: