Работа с моделью скелета человека онлайн

История изучения черепа и названия костей

Первыми людьми, получившими систематизированные знания об анатомии черепа, были древние егпитяне, практиковавшие бальзамирование умерших. Процедура подразумевала удаление головного мозга при необходимости сохранить лицо человека. Для этого использовались орудия, напоминающие хирургические инструменты, и применялись разные подходы с проникновением к мозгу через носовые отверстия или через большое затылочное отверстие. В дальнейшем серьезный вклад в изучение анатомии черепа внесли Герофил и часто ссылавшийся на него в своих работах Гален (10).
В Средние века работы Галена оставались основным источником анатомических знаний в странах Европы. Номенклатуру костей черепа дополнили и обновили анатомы эпохи Возрождения и Нового времени, основываясь на греческих и латинских терминах. Возобновлению интереса к анатомическим исследованиям способстовавло не только снятие папой Сикстом IV в 1472 году формального запрета на вскрытие человеческих трупов в исследовательских целях, но и изменения в представлениях художников об изображении человеческого тела, сместившиеся в сторону большей реалистичности (11, 12).

Художники и анатомы эпохи Ренессанса начинали сотрудничать, создавая анатомические иллюстрации. По некоторым данным, анатом Маркантонио делла Торре планировал создать один из первых анатомических атласов, пригласив в качестве иллюстратора Леонардо да Винчи, однако ученый умер от чумы, не успев окончить труд (13).

Есть свидетелства о том, что первый анатомический атлас современного типа «De humani corporis fabrica», изданный Андреасом Везалием в 1543 году, создавался в сотрудничестве с учеником Тициана Яном ван Калькаром (14).

Названия костей черепа на русском в основном являются дословным переводом латинских и греческих названий. Например, греческий термин sphēnoeidēs, который, согласно словарю Merriam-Webster, в англоязычной литературе впервые встречается в 1732 году (15) — буквально означает клиновидный. Аналогично, ēthmoeidēs означает «похожий на решето». Этот термин в англоязычной литературе впервые употребляется в 1842 году (16)

АРТЕКСА Виртуальная анатомия» (Virtual Anatomy)- это учебная программа

Интерактивный виртуальный атлас анатомии человека в 3D, рассчитанный  на студентов медицинских институтов и опытных практикующих врачей. Технологии отображения трехмерной графики на основе OpenGL или DirectX широко используются в игровой индустрии, которая к настоящему времени достигла больших высот вместе с этими технологиями. 

Пришло время использовать весь потенциал данных технологий  в образовательных целях.  «Анатомия» нуждается в этом больше всех дисциплин. Изучение анатомии в настоящий момент требует от ученика, изучающего столь непростой предмет, больших усилий чтобы «уложить» в голове трехмерное понимание анатомии из текстовой информации в учебниках и двухмерных изображений различных атласов, ведь каждый из них отличается своим стилем составления и масштабом изображений, не дающих полного представления об изучаемом органе.

Виртуальная анатомия человека  решает эти проблемы. Изучение анатомии на человеческом трупе не всегда дает ученику возможность видеть послойно, и кроме того на том же самом трупе нет никаких обозначений анатомических структур частей тела, которые так необходимы для ученика, изучающего какой-либо конкретный орган. Эта программа не первая в категории виртуальных атласов анатомии, но (на наш взгляд) единственная в своем роде, которая полностью приспособлена для того, чтобы показать полностью всю анатомию строения человеческого тела без преград и компромисов.

внутренним строением человека

Обновления программы появляются примерно раз в неделю. За 2016 год вышло 40!!! обновлений. 

Компания Arteksa (Артекса)  всегда готова подсказать и помочь в освоении программы. Так что если вы хотите задать какой-либо вопрос касательно программы или её оплаты, или высказать свои пожелания на счет будущего функционала программы, то мы всегда готовы Вам помочь!

 

Строение и развитие черепа

В составе черепа выделяют 22 кости, часть из которых парные. Иногда к черепу относят еще одну кость — подъязычную. Она расположена под нижней челюстью вблизи гортани и не соединена непосредственно с другими костями черепа. В черепе выделяют два отдела — мозговой (церебральный) и лицевой (висцеральный) (1). Кости первого (решетчатая, клиновидная, лобная, две теменных, две височных и затылочная) формируются в ходе эмбрионального развития из мезодермы, зародышевого листка, дающего начало соединительным тканям, мышцам и клеткам крови. Висцеральный череп формируется из нервного гребня, эмбрионального образования, присутствующего только у позвоночных животных и являющегося производной эктодермы — наружного листка, из которого преимущественно формируется нервная система, эпидермис кожи и эмаль зубов (2).

Плоские кости черепа (теменная, лобная, затылочная, носовая, слёзная и сошник) — одни из немногих костей, у которых окостенение (оссификация) происходит по эндесмальному типу. В этом случае образованию костной ткани не предшествует образование хряща (2). При этом оссификация заканчивается только после 20 лет, когда окостеневают швы, соединяющие кости свода черепа

Подвижное соединение костей по этим швам важно при рождении ребенка для нетравматичного прохождения по родовым путям и в дальнейшем для роста мозга (3)

Кости черепа различаются по плотности и эластичности. Наиболее плотной костью является височная, а область прикрепления жевательной мышцы на ее скуловом отростке — наименее эластичной частью черепа (4).

Кости свода черепа состоят из наружного и внутреннего слоев компактной костной ткани, между которыми располагается губчатая ткань. Это может способствовать перераспределению энрегии от внешних воздействий таким образом, что даже при нарушении целостности губчатого вещества, компактные части кости не пострадают (5).

Строение костей черепа связано со строением органов чувств, расположенных на голове, а также нервов, сосудов и отдельных структур головного мозга. Наиболее сложным строением обладают решетчатая, клиновидная и височная кости. Так, в височных костях расположены органы слуха и равновесия, а также 10 каналов для ответвлений черепно-мозговых нервов и кровеносных сосудов (1). Через перфорированную решетчатую пластинку решетчатой кости проходит 15-20 тонких стволов обонятельного нерва, соединяющих обонятельные рецепторы слизистой носовой полости с обонятельной луковицей в гголовном мозге. Помимо роли в обонянии, по этому пути в полость черепа могут попадать некоторые патогены (6). Клиновидная кость несет углубление — турецкое седло, в котором располагается гипофиз.

Не все функции элементов костей черепа полностью описаны на сегодняшний день. В частности, нет полной ясности по поводу эволюционной роли пазух (синусов) в решетчатой, лобной и верхнечелюстной костях (7). Согласно некоторым версиям, они могут улучшать обоняние и акустические свойства черепа, поддерживать иммунитет в носовой полости, или участвовать в терморегуляции (8, 7). Последняя гипотеза, впрочем, вызывает дискуссии (9).

Интерактивное приложение

Для того, чтобы продемонстрировать строение черепа человека, мы разработали онлайн-приложение, которое позволяет рассмотреть модель черепа с разных сторон, и дает возможность выделить любую кость, как нажатием на самой модели, так и кликом на соответствующую подпись в правой части. Названия продублированы на пяти языках, а описания костей доступны на русском и английском. Использование трехмерных моделей при создании интерактивных анатомических пособий, рассчитанных на браузеры и мобильные платформы, заставляет разработчиков идти на ряд компромиссов и жертвовать детальностью и качеством визуализации. Причина этого в том, что быстрая и комфортная работа с трехмерной графикой требует больших технических ресурсов на стороне пользователя. Принцип, на основе которого создано данное приложение, позволяет достигать беспрецедентного на сегодняшний день уровня визуализации, сохраняя возможность рассмотреть модель с разных сторон. При этом с приложением одинаково удобно работать как в браузерах на компьютерах, так и при помощи мобильных устройств на iOS или Android.

Показать ссылки

Скелет

Мы по-прежнему можем применять keyframe animation, но только уже по отношению к скелету, а
это требует хранения гораздо меньшего объема данных.

Скелет в простейшем случае представляет из себя набор костей (bones, joints),
соединенных иерархическим образом. На рис. 1 приведены скелеты нескольких персонажей из игры DooM III.

Рис 1. Скелеты моделей из игры DooM III.

Каждая кость скелета — это отрезок, начало которого подсоединено к концу «родительской кости»
(parent bone).

Рис 2. Пример простого скелета для модели человека.

Поскольку начало кости полностью задается родительской костью, то для однозначного задания кости
необходимо задать ссылку на родительскую кость и конец отрезка.

Конец отрезка обычно задается как афинное преобразование не изменяющее длины (изометризм), переводящее
начало кости в ее конец.

Можно показать, что такое преобразование всегда представляет из себя суперпозицию поворота и переноса.

Самым удобным способом задания поворота является использование единичных кватернионов.

Тем самым мы приходим к следующей структуре данных для представления кости скелета:

Анимация человека

В 3Dmax для анимации всегда открыта панель внизу окна. На ней содержится временная шкала, кнопки переключения между автоматическим выставлением ключей анимации (AutoKey) и ручным (SetKey), кнопка добавления нового ключа анимации (SetKeys), настройки временной шкалы (TimeConfiguration), а также панель управления воспроизведением анимации.

Чтобы изменить количество доступных кадров временной шкалы, параметры воспроизведения, количество кадров в секунду и другие доступные параметры, нужно открыть окно настроек Time Configuration.

После настройки временной шкалы мы можем приступить к созданию простой анимации нашего персонажа. Нажимаем кнопку SetKey, после чего наша шкала будет подсвечена красным цветом. Выбираем часть тела для анимации, нажимаем на кнопку SetKeys (на кнопке нарисован «+» и ключ), после чего на временной шкале появится квадратик над цифрой 0. Это и есть новый ключ. Теперь передвигаем верхний ползунок на временной шкале на нужное количество кадров, например, на 30. Затем передвигаем анимируемую часть тела в нужную позицию и снова жмём кнопку SetKeys. Можем сделать ещё несколько движений и для других частей тела тем же способом.

Теперь нажимаем Play Animation и наблюдаем, как персонаж выполняет движения тела.

Автор урока: Богдан Чеповой

Расчет вершин по скелету

Рассмотрим теперь как можно при помощи скелета задавать вершины модели.

Простейшим случаем является сопоставление каждой вершине определенной кости, относительно конца которой
и задается вершина (рис 5.)

Рис 5. Задание вершин относительно заданной кости.

Тогда для нахождения положения вершины по заданному скелету нам достаочно лишь найти абсолютное
преобразование, задаваемое требуемой костью и преобразовать при помощи его координаты вершины.

Как известно, если преобразование для вершин задается при помощи однородной матрицы M
(размера 4х4), то нормали (и другие вектора, «прикрепленные» к модели) преобразуются при помощи
обращенной и транспонированной верхней левой 3х3 подматрицы матрицы M.

Однако в случае скелетной анимации применяемые преобразования представляют собой композицию поворота и
переноса (причем за перенос отвечает крайний правый столбец матрицы M), то
верхняя левая 3х3 подматрица — это матрица поворота.

Однако для любой матрицы поворота R (так как она является ортогональной матрицей) справедливо следующее равенство
R-1=RT. Поэтому вектор нормали (а также
касательный вектор и бинормаль) преобразуются поворотом при помощи кватерниона, задающего поворот.

Поэтому когда необходимо найти не только положение вершины, но и связанные с мэшем направления (нормаль,
касательный вектор, и т.д.), то строится абсолютное преобразование для кости, состоящее из поворота и
переноса.

Сама вершина преобразуется с использованием как поворота, так и переноса, а вектора направлений
преобразуются только при помощи поворота.

В игре DooM III использовалась более гибкая схема — для каждой вершины задается не одна кость,
а несколько. Для каждой из таких костей кроме положения вершины относительно нее задается также и
вклад данной кости (ее вес). Результирующее положение вершины берется как взвешенная сумма
преобразованных костями вершин (в качестве веса используется вес, приписываемый данной кости для данной
вершины). Для любой вершины сумма всех весов должна равняться единице.

Это позволяет при анимации вершины учитывать сразу несколько костей, что позволяет создавать
более реалистичную анимацию.

В случае использования сразу нескольких костей для задания положения вершины, нормаль и другие вектора
также строятся с использованием нескольких костей. Сперва нормаль поворачивается при помощи
абсолютного преобразование поворота, задаваемого костью, затем получившиеся вектора складываются с учетом
весов, после чего полученный результат нормируется (хотя поворот и не изменяет длины вектора, но вот
сумма единичных векторов скорее всего уже не будет единичным вектором).

Таким образом все анимации (в том числе и получаемая путем физических расчетов для скелета)
персонажа сводятся к анимации самого скелета.

После того, как для заданного момента времени, скелет найден, то сперва для каждой кости находится
абсолютное преобразование, задаваемое ею, а потом вычисляются положения всех вершин модели и
производится рендеринг.

Далее мы рассмотрим скелетную анимацию на примере моделей из игры Doom III. Большим удобством
такого выбора является не только достаточно гибкая схема анимации, но также и тот факт, что все данные
игры хранятся в обычных zip-файлах, причем описания моделей и анимаций задаются обычными
текстовыми файлами с довольно простой структурой.

Для задания самой модели используются файлы с расширением .md5-mesh, а для задания
анимации для модели используются файлы с расширением .md5-anim.

Анатомический атлас в 3D – революция и эволюция в изучении анатомии

18 Май 2016

Анатомический атлас в 3D – это просто потрясающая вещь для тех, кто хочет познакомиться с собой поближе – по крайней мере, со своим телом В таких атласах анатомические модели (скелета, мышц и других структур) можно повертеть во ВСЕ стороны, «потрогать» через экран своего смартфона или планшета, и узнать (и даже услышать, благодаря функции озвучивания), как называется и где находится тот или иной орган, мышца, кость, связка и т.д. Для тех, кто серьезно занимается изучением анатомии – это очень полезное «живое пособие», которое весьма облегчает процесс обучения и делает его гораздо более интересным.

Сейчас разными разработчиками (правда, зарубежными – в России аналогов пока еще нет) выпущено несколько таких «Анатомий в 3D», но нам больше всего понравились приложения от 3D4 Medical – графика и детализация у них действительно на высоте.

У 3D4 Medical несколько видов приложений:

Essential Skeleton 3 – бесплатный 3D-атлас костной структуры человека:

Essential Anatomy 3 – 3D атлас, включающий 10 анатомических систем человека (костная, мышечная, нервная, дыхательная, пищеварительная, выделительная, лимфатическая, вены, артерии, соединительные ткани, а также отдельно «вынесены» мозг и сердце). Плюс, в этих приложениях можно создавать свои заметки и добавлять «понравившиеся» части тела в закладки

Кроме того, у 3D4 Medical также есть приложение iMuscle 2, в котором можно «в живую» посмотреть, как и какие мышцы двигаются при выполнении различных упражнений фитнеса, пилатеса и т.д.

Ну и, конечно, (куда же без этого) у них в том числе есть и специальное «йогическое» приложение iYoga Premium, которое, однако, доступно для установки только на iPad и iPhone. В нем можно рассматривать отдельные асаны в движении и даже составлять свои собственные последовательности:

Сайт разработчика 3D4 Medical:

Еще одна компания, которую также стоит отметить – Visible Body:

У них достаточно много замечательных анатомических атласов по различным структурам и отдельным частям человеческого тела.

Пользоваться такими программами гораздо удобнее и интереснее, чем обычным бумажным талмудом. Кроме того, их всегда можно взять с собой и быстро найти необходимое. На них просто любопытно посмотреть, даже если анатомия вас не особо интересует (что было бы очень странно… )

Любите анатомию, и анатомия полюбит вас!

А вот и видео с примерами использования этих приложений.

https://youtube.com/watch?v=wklFwVn_H0U

Видео-туториал – инструкция о том, как пользоваться приложением:

https://youtube.com/watch?v=fIK3L7tcBhU

Красивая видео-презентация одного из приложений:

https://youtube.com/watch?v=MyII2mcgkB8

Дополнительные полезные материалы:

Создание скелета инструментом Bones (кости)

Открываем сцену с нашим персонажем, переходим на вкладку Create/Systems/Standard и выбираем инструмент Bones. Создаём основную кость, после чего продолжаем строить скелет ноги. Чтобы закончить построение, щёлкните правой кнопкой мыши. Чтобы продолжить построение второй ноги, нажмите кнопку Bones, после чего щёлкните по основной кости, с которой мы начинали построение скелета.

Таким же способом создаём остальные кости. Вот что должно получится:

Инструментами Move и Rotate ставим «скелет» в «тело» нашего персонажа, используя другие окна проекций.

Модификатор Skin

Выбираем модель персонажа и применяем модификатор Skin. В параметрах модификатора Bones нажимаем кнопку Add, после чего откроется окно, в котором выбираем все созданные кости.

После этих действий, если мы будем двигать любую из костей, часть тела персонажа будет тоже двигаться. Но теперь нужно правильно настроить зоны влияния костей на объект. Это мы сможем сделать, нажав на кнопку Edit Envelopes, и поставив галочку напротив Vertices в разделе Select.

Пролистываем параметры модификатора ниже, находим кнопку Weight Tool (значок гаечного ключа), и щёлкаем на неё. Перед нами открылось окно параметров, в котором мы будем менять значения силы привязки вершин к каждой кости. При выделении вершин активируются значения в окне параметров WeightTool, где:

  • 0 – отсутствие привязки;
  • 1 – максимальное значение привязки.

Чем выше значение, тем точнее будет перемещаться вершина вслед за костью.

Кнопка Exclude Selected Verts исключает выделенные вершины из зоны влияния кости, Include Selected Verts включает выделенные вершины в зону влияния, а Select Excluded Verts выделяет исключённые ранее вершины.

Так же значения визуально различимы по цвету, где:

  • белый – 0;
  • синий – 0,1;
  • желтый и оранжевый – от 0,25 до 0,9;
  • красный – 1.

Инверсная кинематика

Для создания взаимодействий между несколькими костями применяется инверсная кинематика. Это делается если мы хотим достичь эффекта, когда мы двигаем одну кость, а за ней двигаются и другие.

Рассмотрим технологию на примере ноги персонажа. Выделяем кость, которая отвечает за ступню персонажа. Идём в меню Animation/IKSolvers и щёлкаем на HISolver, после чего будет предложено выбрать кость для привязки.

Щёлкаем в активном окне проекции на кость бедра, как показано на картинке ниже.

После этих несложных действий будет достигнут желаемый эффект. При перемещении объекта привязки, будет перемещена не только ступня человека, но и вся нога последует за ней.

Тоже самое мы можем проделать с другими частями тела.

После правильной настройки все части тела будут двигаться так, как нужно. Теперь можно приступать к анимации.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
3D-тест
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: